|
subroutine | sqrtsym2d_t (x, z, zd) |
| Use the Taylor-series method (eigenvalues both fairly close to unity). More...
|
|
Definition at line 25 of file psym2.f90.
◆ sqrtsym2d_t()
subroutine psym2::sqrtsym2d_t::sqrtsym2d_t |
( |
real(dp), dimension(2,2), intent(in) |
x, |
|
|
real(dp), dimension(2,2), intent(out) |
z, |
|
|
real(dp), dimension(2,2,2,2), intent(out) |
zd |
|
) |
| |
|
private |
Use the Taylor-series method (eigenvalues both fairly close to unity).
For a 2*2 positive definite symmetric matrix x, try to get both the z=sqrt(x) and dz/dx using the binomial-expansion method applied to the intermediate matrix,
r = (x-1). ie z=sqrt(x) = (1+r)^{1/2} = I + (1/2)*r -(1/8)*r^2 ...
+ [(-)^n *(2n)!/{(n+1)! * n! *2^{2*n-1}} ]*r^{n+1}
- Parameters
-
[in] | x | symmetric 2*2 positive-definite matrix |
[out] | z | sqrt(x) result |
[out] | zd | symmetric derivative |
- Author
- R. J. Purser
Definition at line 236 of file psym2.f90.
The documentation for this interface was generated from the following file:
- /lfs/h2/emc/global/noscrub/George.Gayno/ufs_utils.git/UFS_UTILS.upstream/sorc/grid_tools.fd/regional_esg_grid.fd/psym2.f90