grid_tools  1.12.0
 All Data Structures Files Functions Variables Pages
psym2::sqrtsym2d_t Interface Reference

Private Member Functions

subroutine sqrtsym2d_t (x, z, zd)
 Use the Taylor-series method (eigenvalues both fairly close to unity). More...
 

Detailed Description

Definition at line 25 of file psym2.f90.

Constructor & Destructor Documentation

subroutine psym2::sqrtsym2d_t::sqrtsym2d_t ( real(dp), dimension(2,2), intent(in)  x,
real(dp), dimension(2,2), intent(out)  z,
real(dp), dimension(2,2,2,2), intent(out)  zd 
)
private

Use the Taylor-series method (eigenvalues both fairly close to unity).

For a 2*2 positive definite symmetric matrix x, try to get both the z=sqrt(x) and dz/dx using the binomial-expansion method applied to the intermediate matrix,

r = (x-1). ie z=sqrt(x) = (1+r)^{1/2} = I + (1/2)*r -(1/8)*r^2 ...
  + [(-)^n *(2n)!/{(n+1)! * n! *2^{2*n-1}} ]*r^{n+1}
Parameters
[in]xsymmetric 2*2 positive-definite matrix
[out]zsqrt(x) result
[out]zdsymmetric derivative
Author
R. J. Purser

Definition at line 235 of file psym2.f90.


The documentation for this interface was generated from the following file: