grid_tools 1.14.0
Loading...
Searching...
No Matches
pmat::ldum Interface Reference

Public Member Functions

subroutine cldum (a, ipiv, d)
 Perform L*D*U decomposition, with pivoting, of square matrix.
 
subroutine cldumf (a, ipiv, d, ff)
 Perform l-d-u decomposition of square matrix a in place with pivoting.
 
subroutine dldum (a, ipiv, d)
 Perform L*D*U decomposition, with pivoting, of square matrix.
 
subroutine dldumf (a, ipiv, d, ff)
 Perform l-d-u decomposition of square matrix a in place with pivoting.
 
subroutine sldum (a, ipiv, d)
 Perform L*D*U decomposition, with pivoting, of square matrix.
 
subroutine sldumf (a, ipiv, d, ff)
 Perform l-d-u decomposition of square matrix a in place with pivoting.
 

Detailed Description

Definition at line 27 of file pmat.f90.

Member Function/Subroutine Documentation

◆ cldum()

subroutine pmat::ldum::cldum ( complex(dpc), dimension(:,:), intent(inout) a,
integer(spi), dimension(:), intent(out) ipiv,
complex(dpc), intent(out) d )

Perform L*D*U decomposition, with pivoting, of square matrix.

Complex double precision version.

Parameters
[in,out]ainput square matrix, output L,D,U factors
[out]ddeterminant sign change indicator (+1 or -1)
[out]ipivvector of pivots
Author
R. J. Purser

Definition at line 508 of file pmat.f90.

◆ cldumf()

subroutine pmat::ldum::cldumf ( complex(dpc), dimension(:,:), intent(inout) a,
integer(spi), dimension(:), intent(out) ipiv,
complex(dpc), intent(out) d,
logical, intent(out) ff )

Perform l-d-u decomposition of square matrix a in place with pivoting.

Complex double precision version.

Parameters
[in,out]asquare matrix to be factorized
[out]ipivvector encoding the pivoting sequence
[out]dindicator for possible sign change of determinant
[out]fffailure flag, set to .true. when determinant of a vanishes.
Author
R. J. Purser

Definition at line 659 of file pmat.f90.

References pietc::c0, pietc::c1, pietc::f, pietc::t, pietc::u0, and pietc::u1.

◆ dldum()

subroutine pmat::ldum::dldum ( real(dp), dimension(:,:), intent(inout) a,
integer(spi), dimension(:), intent(out) ipiv,
real(dp), intent(out) d )

Perform L*D*U decomposition, with pivoting, of square matrix.

Double precision version.

Parameters
[in,out]ainput square matrix, output L,D,U factors
[out]ddeterminant sign change indicator (+1 or -1)
[out]ipivvector of pivots
Author
R. J. Purser

Definition at line 492 of file pmat.f90.

◆ dldumf()

subroutine pmat::ldum::dldumf ( real(dp), dimension(:,:), intent(inout) a,
integer, dimension(:), intent(out) ipiv,
real(dp), intent(out) d,
logical(spi), intent(out) ff )

Perform l-d-u decomposition of square matrix a in place with pivoting.

Double precision version.

Parameters
[in,out]asquare matrix to be factorized
[out]ipivvector encoding the pivoting sequence
[out]dindicator for possible sign change of determinant
[out]fffailure flag, set to .true. when determinant of a vanishes.
Author
R. J. Purser

Definition at line 592 of file pmat.f90.

References pietc::f, pietc::t, pietc::u0, and pietc::u1.

◆ sldum()

subroutine pmat::ldum::sldum ( real(sp), dimension(:,:), intent(inout) a,
integer(spi), dimension(:), intent(out) ipiv,
real(sp), intent(out) d )

Perform L*D*U decomposition, with pivoting, of square matrix.

Single precision version.

Parameters
[in,out]ainput square matrix, output L,D,U factors
[out]ddeterminant sign change indicator (+1 or -1)
[out]ipivvector of pivots
Author
R. J. Purser

Definition at line 476 of file pmat.f90.

◆ sldumf()

subroutine pmat::ldum::sldumf ( real(sp), dimension(:,:), intent(inout) a,
integer(spi), dimension(:), intent(out) ipiv,
real(sp), intent(out) d,
logical, intent(out) ff )

Perform l-d-u decomposition of square matrix a in place with pivoting.

Single precision version.

Parameters
[in,out]asquare matrix to be factorized
[out]ipivvector encoding the pivoting sequence
[out]dindicator for possible sign change of determinant
[out]fffailure flag, set to .true. when determinant of a vanishes.
Author
R. J. Purser

Definition at line 525 of file pmat.f90.


The documentation for this interface was generated from the following file: